CDH1-involved Ubiquitination of SIRT5 Promotes the Entry of Colorectal Cancer Cells into Quiescence and Enhances Cell Stemness


Citar

Texto integral

Resumo

Background: This study explored whether the cell cycle regulator cadherin 1 (CDH1) impacts colorectal cancer cell cycle and stemness via mediating ubiquitination of sirtuin 5 (SIRT5).

Methods: We first constructed CDH1 overexpression plasmid and small interfering RNA against SIRT5 (siSIRT5) and transfected them into HCT116/HT29 cells, followed by transfection efficiency verification. The effect of CDH1 on Cyclin F/SIRT5/CDH1 protein levels in HCT116/HT29 cells was verified by Western blot. After up-regulation of CDH1, changes in SIRT5 ubiquitination (immunoprecipitation), cell cycle (cell cycle kit), proliferation (5-Bromodeoxyuridine assay), and stemness marker expressions (qRT-PCR) in HCT116/HT29 cells were detected. Rescue assays were performed to examine cell proliferation and stemness marker expressions.

Results: Overexpression of CDH1 decreased Cyclin F expression and increased SIRT5 and CDH1 expressions in HCT116/HT29 cells. Up-regulation of CDH1 suppressed SIRT5 ubiquitination, promoted G0/G1 phase blockage in HCT116/HT29 cells, boosted cell proliferation into quiescence and enhanced cell stemness. siSIRT5 counteracted the regulatory effect of CDH1 overexpression on colorectal cancer cells.

Conclusion: CDH1 promotes the entry of colorectal cancer cells into quiescence and enhances stemness by dampening SIRT5 ubiquitination.

Sobre autores

Wei Li

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Autor responsável pela correspondência
Email: info@benthamscience.net

Jian Chen

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Email: info@benthamscience.net

Jinbao Yang

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Email: info@benthamscience.net

Bo Zhang

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Email: info@benthamscience.net

Dihao Wen

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Email: info@benthamscience.net

Zhibin Jiang

General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force

Email: info@benthamscience.net

Bibliografia

  1. Jin, K; Ren, C; Liu, Y; Lan, H; Wang, Z An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol., 2020, 89(Pt A), 107041. doi: 10.1016/j.intimp.2020.107041
  2. Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol., 2023, 127(8), 1247-1251. doi: 10.1002/jso.27320
  3. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691. doi: 10.1136/gutjnl-2015-310912 PMID: 26818619
  4. McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem., 2017, 24(15), 1537-1557. PMID: 28079003
  5. Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
  6. Robertson, D. J.; Imperiale, T. F. Colorectal Cancer Screening: Is Earlier Better? Lancet Gastroenterol. Hepatol. 2018, 3(8), 519. doi: 10.1016/S2468-1253(18)30205-X
  7. Du, L.; Cheng, Q.; Zheng, H.; Liu, J.; Liu, L.; Chen, Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin. Cancer Biol., 2022, 82, 150-161. doi: 10.1016/j.semcancer.2021.02.012 PMID: 33631296
  8. Colloca, A.; Balestrieri, A.; Anastasio, C.; Balestrieri, M.L.; D’Onofrio, N. Mitochondrial sirtuins in chronic degenerative diseases: New metabolic targets in colorectal cancer. Int. J. Mol. Sci., 2022, 23(6), 3212. doi: 10.3390/ijms23063212 PMID: 35328633
  9. Cha, Y.; Kim, T.; Jeon, J.; Jang, Y.; Kim, P.B.; Lopes, C.; Leblanc, P.; Cohen, B.M.; Kim, K.S. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep., 2021, 37(13), 110155. doi: 10.1016/j.celrep.2021.110155 PMID: 34965411
  10. Polletta, L.; Vernucci, E.; Carnevale, I.; Arcangeli, T.; Rotili, D.; Palmerio, S.; Steegborn, C.; Nowak, T.; Schutkowski, M.; Pellegrini, L.; Sansone, L.; Villanova, L.; Runci, A.; Pucci, B.; Morgante, E.; Fini, M.; Mai, A.; Russo, M.A.; Tafani, M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015, 11(2), 253-270. doi: 10.1080/15548627.2015.1009778 PMID: 25700560
  11. Kumar, S.; Lombard, D.B. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit. Rev. Biochem. Mol. Biol., 2018, 53(3), 311-334. doi: 10.1080/10409238.2018.1458071 PMID: 29637793
  12. Yang, X.; Wang, Z.; Li, X.; Liu, B.; Liu, M.; Liu, L.; Chen, S.; Ren, M.; Wang, Y.; Yu, M.; Wang, B.; Zou, J.; Zhu, W.G.; Yin, Y.; Gu, W.; Luo, J. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res., 2018, 78(2), 372-386. doi: 10.1158/0008-5472.CAN-17-1912 PMID: 29180469
  13. Wang, H.L.; Chen, Y.; Wang, Y.Q.; Tao, E.W.; Tan, J.; Liu, Q.Q.; Li, C.M.; Tong, X.M.; Gao, Q.Y.; Hong, J.; Chen, Y.X.; Fang, J.Y. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat. Commun., 2022, 13(1), 6121. doi: 10.1038/s41467-022-33903-8 PMID: 36253417
  14. Hu, T.; Shukla, S.K.; Vernucci, E.; He, C.; Wang, D.; King, R.J.; Jha, K.; Siddhanta, K.; Mullen, N.J.; Attri, K.S.; Murthy, D.; Chaika, N.V.; Thakur, R.; Mulder, S.E.; Pacheco, C.G.; Fu, X.; High, R.R.; Yu, F.; Lazenby, A.; Steegborn, C.; Lan, P.; Mehla, K.; Rotili, D.; Chaudhary, S.; Valente, S.; Tafani, M.; Mai, A.; Auwerx, J.; Verdin, E.; Tuveson, D.; Singh, P.K. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression. Gastroenterology, 2021, 161(5), 1584-1600. doi: 10.1053/j.gastro.2021.06.045 PMID: 34245764
  15. Gu, W.; Qian, Q.; Xu, Y.; Xu, X.; Zhang, L.; He, S. SIRT5 regulates autophagy and apoptosis in gastric cancer cells. J. Int. Med. Res., 2021, 49(2), 300060520986355.
  16. Shi, L.; Yan, H.; An, S.; Shen, M.; Jia, W.; Zhang, R.; Zhao, L.; Huang, G.; Liu, J. SIRT 5‐mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol. Oncol., 2019, 13(2), 358-375. doi: 10.1002/1878-0261.12408 PMID: 30443978
  17. Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; He, B.; Chen, W.; Zhang, S.; Cerione, R.A.; Auwerx, J.; Hao, Q.; Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011, 334(6057), 806-809. doi: 10.1126/science.1207861 PMID: 22076378
  18. Teng, P.; Cui, K.; Yao, S.; Fei, B.; Ling, F.; Li, C.; Huang, Z. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ., 2024, 31(1), 65-77. doi: 10.1038/s41418-023-01240-y PMID: 38007551
  19. Kumar, S.; Lombard, D.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid. Redox Signal., 2015, 22(12), 1060-1077. doi: 10.1089/ars.2014.6213 PMID: 25545135
  20. Chien, J.H.; Chang, K.F.; Lee, S.C.; Lee, C.J.; Chen, Y.T.; Lai, H.C.; Lu, Y.C.; Tsai, N.M. Cedrol restricts the growth of colorectal cancer in vitro and in vivo by inducing cell cycle arrest and caspase-dependent apoptotic cell death. Int. J. Med. Sci., 2022, 19(13), 1953-1964. doi: 10.7150/ijms.77719 PMID: 36438926
  21. Mills, C.A.; Wang, X.; Bhatt, D.P.; Grimsrud, P.A.; Matson, J.P.; Lahiri, D.; Burke, D.J.; Cook, J.G.; Hirschey, M.D.; Emanuele, M.J. Sirtuin 5 is regulated by the SCF Cyclin F ubiquitin ligase and is involved in cell cycle control. Mol. Cell. Biol., 2021, 41(2), e00269-e20. doi: 10.1128/MCB.00269-20 PMID: 33168699
  22. Galper, J.; Rayner, S.L.; Hogan, A.L.; Fifita, J.A.; Lee, A.; Chung, R.S.; Blair, I.P.; Yang, S.; Cyclin, F. A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer. Int. J. Biochem. Cell Biol., 2017, 89, 216-220. doi: 10.1016/j.biocel.2017.06.011 PMID: 28652210
  23. Choudhury, R.; Bonacci, T.; Arceci, A.; Lahiri, D.; Mills, C.A.; Kernan, J.L.; Branigan, T.B.; DeCaprio, J.A.; Burke, D.J.; Emanuele, M.J. APC/C and SCF cyclin F constitute a reciprocal feedback circuit controlling S-phase entry. Cell Rep., 2016, 16(12), 3359-3372. doi: 10.1016/j.celrep.2016.08.058 PMID: 27653696
  24. Ye, C.C.; Wang, J. E‐cadherin (CDH1) gene –160C/A polymorphism and the risk of colorectal cancer: A meta‐analysis involving 17,291 subjects. J. Gene Med., 2021, 23(10), e3370. doi: 10.1002/jgm.3370 PMID: 34097324
  25. Qiao, X.; Zhang, L.; Gamper, A.M.; Fujita, T.; Wan, Y. APC/C-Cdh1. Cell Cycle, 2010, 9(19), 3904-3912. doi: 10.4161/cc.9.19.13585 PMID: 20935501
  26. Fujita, T.; Liu, W.; Doihara, H.; Wan, Y. Regulation of Skp2-p27 axis by the Cdh1/anaphase-promoting complex pathway in colorectal tumorigenesis. Am. J. Pathol., 2008, 173(1), 217-228. doi: 10.2353/ajpath.2008.070957 PMID: 18535175
  27. Wang, D.; Yang, Y.; Cao, Y.; Meng, M.; Wang, X.; Zhang, Z.; Fu, W.; Duan, S.; Tang, L. Histone deacetylase inhibitors inhibit lung adenocarcinoma metastasis via HDAC2/YY1 mediated downregulation of Cdh1. Sci. Rep., 2023, 13(1), 12069. doi: 10.1038/s41598-023-38848-6 PMID: 37495623
  28. Shenoy, S. CDH1 (E-cadherin) mutation and gastric cancer: Genetics, molecular mechanisms and guidelines for management. Cancer Manag. Res., 2019, 11, 10477-10486. doi: 10.2147/CMAR.S208818 PMID: 31853199
  29. Suski, J.M.; Braun, M.; Strmiska, V.; Sicinski, P. Targeting cell-cycle machinery in cancer. Cancer Cell, 2021, 39(6), 759-778. doi: 10.1016/j.ccell.2021.03.010 PMID: 33891890
  30. De Falco, M.; De Luca, A. Cell cycle as a target of antineoplastic drugs. Curr. Pharm. Des., 2010, 16(12), 1417-1426. doi: 10.2174/138161210791033914 PMID: 20166983
  31. Treichel, S.; Filippi, M.D. Linking cell cycle to hematopoietic stem cell fate decisions. Front. Cell Dev. Biol., 2023, 11, 1231735. doi: 10.3389/fcell.2023.1231735 PMID: 37645247
  32. Narayanan, S.; Cai, C.Y.; Assaraf, Y.G.; Guo, H.Q.; Cui, Q.; Wei, L.; Huang, J.J.; Ashby, C.R., Jr; Chen, Z.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat., 2020, 48, 100663. doi: 10.1016/j.drup.2019.100663 PMID: 31785545
  33. Kimata, Y. APC/C ubiquitin ligase: Coupling cellular differentiation to G1/G0 phase in multicellular systems. Trends Cell Biol., 2019, 29(7), 591-603. doi: 10.1016/j.tcb.2019.03.001 PMID: 31000380
  34. Kitagawa, K.; Kitagawa, M. The SCF-type E3 ubiquitin ligases as cancer targets. Curr. Cancer Drug Targets, 2016, 16(2), 119-129. doi: 10.2174/1568009616666151112122231 PMID: 26560120
  35. Spano, D.; Catara, G. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy. Cells, 2023, 13(1), 29. doi: 10.3390/cells13010029 PMID: 38201233
  36. Deng, L.; Meng, T.; Chen, L.; Wei, W.; Wang, P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther., 2020, 5(1), 11. doi: 10.1038/s41392-020-0107-0 PMID: 32296023
  37. Tang, J.Q.; Marchand, M.M.; Veggiani, G. Ubiquitin engineering for interrogating the ubiquitin–proteasome system and novel therapeutic strategies. Cells, 2023, 12(16), 2117. doi: 10.3390/cells12162117 PMID: 37626927
  38. Greil, C.; Engelhardt, M.; Wäsch, R. The role of the APC/C and its coactivators Cdh1 and Cdc20 in cancer development and therapy. Front. Genet., 2022, 13, 941565. doi: 10.3389/fgene.2022.941565 PMID: 35832196
  39. Cappell, S.D.; Chung, M.; Jaimovich, A.; Spencer, S.L.; Meyer, T. Irreversible APC Cdh1 inactivation underlies the point of no return for cell-cycle entry. Cell, 2016, 166(1), 167-180. doi: 10.1016/j.cell.2016.05.077 PMID: 27368103
  40. Shachaf, C.M.; Kopelman, A.M.; Arvanitis, C.; Karlsson, Å.; Beer, S.; Mandl, S.; Bachmann, M.H.; Borowsky, A.D.; Ruebner, B.; Cardiff, R.D.; Yang, Q.; Bishop, J.M.; Contag, C.H.; Felsher, D.W. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature, 2004, 431(7012), 1112-1117. doi: 10.1038/nature03043 PMID: 15475948
  41. Liao, Q.; Ren, Y.; Yang, Y.; Zhu, X.; Zhi, Y.; Zhang, Y.; Chen, Y.; Ding, Y.; Zhao, L. CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis, 2021, 10(12), 84. doi: 10.1038/s41389-021-00374-3 PMID: 34862361
  42. Fang, Z.; Zhong, M.; Zhou, L.; Le, Y.; Wang, H. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered, 2022, 13(3), 6807-6818.
  43. Guo, D.; Song, X.; Guo, T.; Gu, S.; Chang, X.; Su, T.; Yang, X.; Liang, B.; Huang, D. Vimentin acetylation is involved in SIRT5-mediated hepatocellular carcinoma migration. Am. J. Cancer Res., 2018, 8(12), 2453-2466. PMID: 30662803
  44. Basu, B.; Ghosh, M.K. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(7), 119261. doi: 10.1016/j.bbamcr.2022.119261 PMID: 35307468
  45. Akhmetkaliyev, A.; Alibrahim, N.; Shafiee, D.; Tulchinsky, E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol. Cancer, 2023, 22(1), 90. doi: 10.1186/s12943-023-01793-z PMID: 37259089
  46. Chen, C.; Aihemaiti, M.; Zhang, X.; Qu, H.; Jiao, J.; Sun, Q.; Yu, W. FOXD4 induces tumor progression in colorectal cancer by regulation of the SNAI3/CDH1 axis. Cancer Biol. Ther., 2018, 19(11), 1065-1071. doi: 10.1080/15384047.2018.1480291 PMID: 30252597
  47. Tsukiyama, T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell. Dev. Biol. Anim., 2024, 60(5), 449-465.
  48. Dittmer, J. Mechanisms governing metastatic dormancy in breast cancer. Semin. Cancer Biol., 2017, 44, 72-82. doi: 10.1016/j.semcancer.2017.03.006 PMID: 28344165
  49. Manrique, I.; Nguewa, P.; Bleau, A.M.; Nistal-Villan, E.; Lopez, I.; Villalba, M.; Gil-Bazo, I.; Calvo, A. The inhibitor of differentiation isoform Id1b, generated by alternative splicing, maintains cell quiescence and confers self-renewal and cancer stem cell-like properties. Cancer Lett., 2015, 356(2)(2 Pt B), 899-909. doi: 10.1016/j.canlet.2014.10.035 PMID: 25449776
  50. Liu, L.; Tao, T.; Liu, S.; Yang, X.; Chen, X.; Liang, J. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat. Commun., 2021, 12(1), 2693.
  51. Zhou, S.; Huang, H.; Zheng, Z.; Zheng, K.; Xie, L. MOGS promotes stemness acquisition and invasion via enhancing NOTCH1-glycosylation dependent NOTCH pathway in colorectal cancer. Am. J. Cancer Res., 2023, 13(12), 5996-6010. PMID: 38187061
  52. Remšík, J.; Pícková, M.; Vacek, O.; Fedr, R.; Binó, L.; Hampl, A. TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells. Sci. Rep., 2020, 10(1), 11396.
  53. Makena, M.R.; Ranjan, A.; Thirumala, V.; Reddy, A.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165339. doi: 10.1016/j.bbadis.2018.11.015 PMID: 30481586
  54. Mohiuddin, I.S.; Wei, S.J.; Kang, M.H. Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165432. doi: 10.1016/j.bbadis.2019.03.005 PMID: 30904611
  55. Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226. doi: 10.1016/j.tcb.2018.12.001 PMID: 30594349
  56. Francescangeli, F.; Contavalli, P.; De Angelis, M.L.; Careccia, S.; Signore, M.; Haas, T.L.; Salaris, F.; Baiocchi, M.; Boe, A.; Giuliani, A.; Tcheremenskaia, O.; Pagliuca, A.; Guardiola, O.; Minchiotti, G.; Colace, L.; Ciardi, A.; D’Andrea, V.; La Torre, F.; Medema, J.; De Maria, R.; Zeuner, A. A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 2. doi: 10.1186/s13046-019-1505-4 PMID: 31910865

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025