CDH1-involved Ubiquitination of SIRT5 Promotes the Entry of Colorectal Cancer Cells into Quiescence and Enhances Cell Stemness
- Autores: Li W.1, Chen J.1, Yang J.1, Zhang B.1, Wen D.1, Jiang Z.1
-
Afiliações:
- General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
- Edição: Volume 25, Nº 15 (2025)
- Páginas: 1085-1093
- Seção: Chemistry
- URL: https://genescells.com/1871-5206/article/view/694445
- DOI: https://doi.org/10.2174/0118715206336851241204111721
- ID: 694445
Citar
Texto integral
Resumo
Background: This study explored whether the cell cycle regulator cadherin 1 (CDH1) impacts colorectal cancer cell cycle and stemness via mediating ubiquitination of sirtuin 5 (SIRT5).
Methods: We first constructed CDH1 overexpression plasmid and small interfering RNA against SIRT5 (siSIRT5) and transfected them into HCT116/HT29 cells, followed by transfection efficiency verification. The effect of CDH1 on Cyclin F/SIRT5/CDH1 protein levels in HCT116/HT29 cells was verified by Western blot. After up-regulation of CDH1, changes in SIRT5 ubiquitination (immunoprecipitation), cell cycle (cell cycle kit), proliferation (5-Bromodeoxyuridine assay), and stemness marker expressions (qRT-PCR) in HCT116/HT29 cells were detected. Rescue assays were performed to examine cell proliferation and stemness marker expressions.
Results: Overexpression of CDH1 decreased Cyclin F expression and increased SIRT5 and CDH1 expressions in HCT116/HT29 cells. Up-regulation of CDH1 suppressed SIRT5 ubiquitination, promoted G0/G1 phase blockage in HCT116/HT29 cells, boosted cell proliferation into quiescence and enhanced cell stemness. siSIRT5 counteracted the regulatory effect of CDH1 overexpression on colorectal cancer cells.
Conclusion: CDH1 promotes the entry of colorectal cancer cells into quiescence and enhances stemness by dampening SIRT5 ubiquitination.
Palavras-chave
Sobre autores
Wei Li
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Autor responsável pela correspondência
Email: info@benthamscience.net
Jian Chen
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Email: info@benthamscience.net
Jinbao Yang
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Email: info@benthamscience.net
Bo Zhang
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Email: info@benthamscience.net
Dihao Wen
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Email: info@benthamscience.net
Zhibin Jiang
General Surgery Department, The 980th Hospital of the People's Liberation Army Joint Logistics Support Force
Email: info@benthamscience.net
Bibliografia
- Jin, K; Ren, C; Liu, Y; Lan, H; Wang, Z An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol., 2020, 89(Pt A), 107041. doi: 10.1016/j.intimp.2020.107041
- Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol., 2023, 127(8), 1247-1251. doi: 10.1002/jso.27320
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691. doi: 10.1136/gutjnl-2015-310912 PMID: 26818619
- McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem., 2017, 24(15), 1537-1557. PMID: 28079003
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
- Robertson, D. J.; Imperiale, T. F. Colorectal Cancer Screening: Is Earlier Better? Lancet Gastroenterol. Hepatol. 2018, 3(8), 519. doi: 10.1016/S2468-1253(18)30205-X
- Du, L.; Cheng, Q.; Zheng, H.; Liu, J.; Liu, L.; Chen, Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin. Cancer Biol., 2022, 82, 150-161. doi: 10.1016/j.semcancer.2021.02.012 PMID: 33631296
- Colloca, A.; Balestrieri, A.; Anastasio, C.; Balestrieri, M.L.; D’Onofrio, N. Mitochondrial sirtuins in chronic degenerative diseases: New metabolic targets in colorectal cancer. Int. J. Mol. Sci., 2022, 23(6), 3212. doi: 10.3390/ijms23063212 PMID: 35328633
- Cha, Y.; Kim, T.; Jeon, J.; Jang, Y.; Kim, P.B.; Lopes, C.; Leblanc, P.; Cohen, B.M.; Kim, K.S. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep., 2021, 37(13), 110155. doi: 10.1016/j.celrep.2021.110155 PMID: 34965411
- Polletta, L.; Vernucci, E.; Carnevale, I.; Arcangeli, T.; Rotili, D.; Palmerio, S.; Steegborn, C.; Nowak, T.; Schutkowski, M.; Pellegrini, L.; Sansone, L.; Villanova, L.; Runci, A.; Pucci, B.; Morgante, E.; Fini, M.; Mai, A.; Russo, M.A.; Tafani, M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015, 11(2), 253-270. doi: 10.1080/15548627.2015.1009778 PMID: 25700560
- Kumar, S.; Lombard, D.B. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit. Rev. Biochem. Mol. Biol., 2018, 53(3), 311-334. doi: 10.1080/10409238.2018.1458071 PMID: 29637793
- Yang, X.; Wang, Z.; Li, X.; Liu, B.; Liu, M.; Liu, L.; Chen, S.; Ren, M.; Wang, Y.; Yu, M.; Wang, B.; Zou, J.; Zhu, W.G.; Yin, Y.; Gu, W.; Luo, J. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res., 2018, 78(2), 372-386. doi: 10.1158/0008-5472.CAN-17-1912 PMID: 29180469
- Wang, H.L.; Chen, Y.; Wang, Y.Q.; Tao, E.W.; Tan, J.; Liu, Q.Q.; Li, C.M.; Tong, X.M.; Gao, Q.Y.; Hong, J.; Chen, Y.X.; Fang, J.Y. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat. Commun., 2022, 13(1), 6121. doi: 10.1038/s41467-022-33903-8 PMID: 36253417
- Hu, T.; Shukla, S.K.; Vernucci, E.; He, C.; Wang, D.; King, R.J.; Jha, K.; Siddhanta, K.; Mullen, N.J.; Attri, K.S.; Murthy, D.; Chaika, N.V.; Thakur, R.; Mulder, S.E.; Pacheco, C.G.; Fu, X.; High, R.R.; Yu, F.; Lazenby, A.; Steegborn, C.; Lan, P.; Mehla, K.; Rotili, D.; Chaudhary, S.; Valente, S.; Tafani, M.; Mai, A.; Auwerx, J.; Verdin, E.; Tuveson, D.; Singh, P.K. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression. Gastroenterology, 2021, 161(5), 1584-1600. doi: 10.1053/j.gastro.2021.06.045 PMID: 34245764
- Gu, W.; Qian, Q.; Xu, Y.; Xu, X.; Zhang, L.; He, S. SIRT5 regulates autophagy and apoptosis in gastric cancer cells. J. Int. Med. Res., 2021, 49(2), 300060520986355.
- Shi, L.; Yan, H.; An, S.; Shen, M.; Jia, W.; Zhang, R.; Zhao, L.; Huang, G.; Liu, J. SIRT 5‐mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol. Oncol., 2019, 13(2), 358-375. doi: 10.1002/1878-0261.12408 PMID: 30443978
- Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; He, B.; Chen, W.; Zhang, S.; Cerione, R.A.; Auwerx, J.; Hao, Q.; Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011, 334(6057), 806-809. doi: 10.1126/science.1207861 PMID: 22076378
- Teng, P.; Cui, K.; Yao, S.; Fei, B.; Ling, F.; Li, C.; Huang, Z. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ., 2024, 31(1), 65-77. doi: 10.1038/s41418-023-01240-y PMID: 38007551
- Kumar, S.; Lombard, D.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid. Redox Signal., 2015, 22(12), 1060-1077. doi: 10.1089/ars.2014.6213 PMID: 25545135
- Chien, J.H.; Chang, K.F.; Lee, S.C.; Lee, C.J.; Chen, Y.T.; Lai, H.C.; Lu, Y.C.; Tsai, N.M. Cedrol restricts the growth of colorectal cancer in vitro and in vivo by inducing cell cycle arrest and caspase-dependent apoptotic cell death. Int. J. Med. Sci., 2022, 19(13), 1953-1964. doi: 10.7150/ijms.77719 PMID: 36438926
- Mills, C.A.; Wang, X.; Bhatt, D.P.; Grimsrud, P.A.; Matson, J.P.; Lahiri, D.; Burke, D.J.; Cook, J.G.; Hirschey, M.D.; Emanuele, M.J. Sirtuin 5 is regulated by the SCF Cyclin F ubiquitin ligase and is involved in cell cycle control. Mol. Cell. Biol., 2021, 41(2), e00269-e20. doi: 10.1128/MCB.00269-20 PMID: 33168699
- Galper, J.; Rayner, S.L.; Hogan, A.L.; Fifita, J.A.; Lee, A.; Chung, R.S.; Blair, I.P.; Yang, S.; Cyclin, F. A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer. Int. J. Biochem. Cell Biol., 2017, 89, 216-220. doi: 10.1016/j.biocel.2017.06.011 PMID: 28652210
- Choudhury, R.; Bonacci, T.; Arceci, A.; Lahiri, D.; Mills, C.A.; Kernan, J.L.; Branigan, T.B.; DeCaprio, J.A.; Burke, D.J.; Emanuele, M.J. APC/C and SCF cyclin F constitute a reciprocal feedback circuit controlling S-phase entry. Cell Rep., 2016, 16(12), 3359-3372. doi: 10.1016/j.celrep.2016.08.058 PMID: 27653696
- Ye, C.C.; Wang, J. E‐cadherin (CDH1) gene –160C/A polymorphism and the risk of colorectal cancer: A meta‐analysis involving 17,291 subjects. J. Gene Med., 2021, 23(10), e3370. doi: 10.1002/jgm.3370 PMID: 34097324
- Qiao, X.; Zhang, L.; Gamper, A.M.; Fujita, T.; Wan, Y. APC/C-Cdh1. Cell Cycle, 2010, 9(19), 3904-3912. doi: 10.4161/cc.9.19.13585 PMID: 20935501
- Fujita, T.; Liu, W.; Doihara, H.; Wan, Y. Regulation of Skp2-p27 axis by the Cdh1/anaphase-promoting complex pathway in colorectal tumorigenesis. Am. J. Pathol., 2008, 173(1), 217-228. doi: 10.2353/ajpath.2008.070957 PMID: 18535175
- Wang, D.; Yang, Y.; Cao, Y.; Meng, M.; Wang, X.; Zhang, Z.; Fu, W.; Duan, S.; Tang, L. Histone deacetylase inhibitors inhibit lung adenocarcinoma metastasis via HDAC2/YY1 mediated downregulation of Cdh1. Sci. Rep., 2023, 13(1), 12069. doi: 10.1038/s41598-023-38848-6 PMID: 37495623
- Shenoy, S. CDH1 (E-cadherin) mutation and gastric cancer: Genetics, molecular mechanisms and guidelines for management. Cancer Manag. Res., 2019, 11, 10477-10486. doi: 10.2147/CMAR.S208818 PMID: 31853199
- Suski, J.M.; Braun, M.; Strmiska, V.; Sicinski, P. Targeting cell-cycle machinery in cancer. Cancer Cell, 2021, 39(6), 759-778. doi: 10.1016/j.ccell.2021.03.010 PMID: 33891890
- De Falco, M.; De Luca, A. Cell cycle as a target of antineoplastic drugs. Curr. Pharm. Des., 2010, 16(12), 1417-1426. doi: 10.2174/138161210791033914 PMID: 20166983
- Treichel, S.; Filippi, M.D. Linking cell cycle to hematopoietic stem cell fate decisions. Front. Cell Dev. Biol., 2023, 11, 1231735. doi: 10.3389/fcell.2023.1231735 PMID: 37645247
- Narayanan, S.; Cai, C.Y.; Assaraf, Y.G.; Guo, H.Q.; Cui, Q.; Wei, L.; Huang, J.J.; Ashby, C.R., Jr; Chen, Z.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat., 2020, 48, 100663. doi: 10.1016/j.drup.2019.100663 PMID: 31785545
- Kimata, Y. APC/C ubiquitin ligase: Coupling cellular differentiation to G1/G0 phase in multicellular systems. Trends Cell Biol., 2019, 29(7), 591-603. doi: 10.1016/j.tcb.2019.03.001 PMID: 31000380
- Kitagawa, K.; Kitagawa, M. The SCF-type E3 ubiquitin ligases as cancer targets. Curr. Cancer Drug Targets, 2016, 16(2), 119-129. doi: 10.2174/1568009616666151112122231 PMID: 26560120
- Spano, D.; Catara, G. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy. Cells, 2023, 13(1), 29. doi: 10.3390/cells13010029 PMID: 38201233
- Deng, L.; Meng, T.; Chen, L.; Wei, W.; Wang, P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther., 2020, 5(1), 11. doi: 10.1038/s41392-020-0107-0 PMID: 32296023
- Tang, J.Q.; Marchand, M.M.; Veggiani, G. Ubiquitin engineering for interrogating the ubiquitin–proteasome system and novel therapeutic strategies. Cells, 2023, 12(16), 2117. doi: 10.3390/cells12162117 PMID: 37626927
- Greil, C.; Engelhardt, M.; Wäsch, R. The role of the APC/C and its coactivators Cdh1 and Cdc20 in cancer development and therapy. Front. Genet., 2022, 13, 941565. doi: 10.3389/fgene.2022.941565 PMID: 35832196
- Cappell, S.D.; Chung, M.; Jaimovich, A.; Spencer, S.L.; Meyer, T. Irreversible APC Cdh1 inactivation underlies the point of no return for cell-cycle entry. Cell, 2016, 166(1), 167-180. doi: 10.1016/j.cell.2016.05.077 PMID: 27368103
- Shachaf, C.M.; Kopelman, A.M.; Arvanitis, C.; Karlsson, Å.; Beer, S.; Mandl, S.; Bachmann, M.H.; Borowsky, A.D.; Ruebner, B.; Cardiff, R.D.; Yang, Q.; Bishop, J.M.; Contag, C.H.; Felsher, D.W. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature, 2004, 431(7012), 1112-1117. doi: 10.1038/nature03043 PMID: 15475948
- Liao, Q.; Ren, Y.; Yang, Y.; Zhu, X.; Zhi, Y.; Zhang, Y.; Chen, Y.; Ding, Y.; Zhao, L. CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis, 2021, 10(12), 84. doi: 10.1038/s41389-021-00374-3 PMID: 34862361
- Fang, Z.; Zhong, M.; Zhou, L.; Le, Y.; Wang, H. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered, 2022, 13(3), 6807-6818.
- Guo, D.; Song, X.; Guo, T.; Gu, S.; Chang, X.; Su, T.; Yang, X.; Liang, B.; Huang, D. Vimentin acetylation is involved in SIRT5-mediated hepatocellular carcinoma migration. Am. J. Cancer Res., 2018, 8(12), 2453-2466. PMID: 30662803
- Basu, B.; Ghosh, M.K. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(7), 119261. doi: 10.1016/j.bbamcr.2022.119261 PMID: 35307468
- Akhmetkaliyev, A.; Alibrahim, N.; Shafiee, D.; Tulchinsky, E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol. Cancer, 2023, 22(1), 90. doi: 10.1186/s12943-023-01793-z PMID: 37259089
- Chen, C.; Aihemaiti, M.; Zhang, X.; Qu, H.; Jiao, J.; Sun, Q.; Yu, W. FOXD4 induces tumor progression in colorectal cancer by regulation of the SNAI3/CDH1 axis. Cancer Biol. Ther., 2018, 19(11), 1065-1071. doi: 10.1080/15384047.2018.1480291 PMID: 30252597
- Tsukiyama, T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell. Dev. Biol. Anim., 2024, 60(5), 449-465.
- Dittmer, J. Mechanisms governing metastatic dormancy in breast cancer. Semin. Cancer Biol., 2017, 44, 72-82. doi: 10.1016/j.semcancer.2017.03.006 PMID: 28344165
- Manrique, I.; Nguewa, P.; Bleau, A.M.; Nistal-Villan, E.; Lopez, I.; Villalba, M.; Gil-Bazo, I.; Calvo, A. The inhibitor of differentiation isoform Id1b, generated by alternative splicing, maintains cell quiescence and confers self-renewal and cancer stem cell-like properties. Cancer Lett., 2015, 356(2)(2 Pt B), 899-909. doi: 10.1016/j.canlet.2014.10.035 PMID: 25449776
- Liu, L.; Tao, T.; Liu, S.; Yang, X.; Chen, X.; Liang, J. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat. Commun., 2021, 12(1), 2693.
- Zhou, S.; Huang, H.; Zheng, Z.; Zheng, K.; Xie, L. MOGS promotes stemness acquisition and invasion via enhancing NOTCH1-glycosylation dependent NOTCH pathway in colorectal cancer. Am. J. Cancer Res., 2023, 13(12), 5996-6010. PMID: 38187061
- Remšík, J.; Pícková, M.; Vacek, O.; Fedr, R.; Binó, L.; Hampl, A. TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells. Sci. Rep., 2020, 10(1), 11396.
- Makena, M.R.; Ranjan, A.; Thirumala, V.; Reddy, A.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165339. doi: 10.1016/j.bbadis.2018.11.015 PMID: 30481586
- Mohiuddin, I.S.; Wei, S.J.; Kang, M.H. Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165432. doi: 10.1016/j.bbadis.2019.03.005 PMID: 30904611
- Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226. doi: 10.1016/j.tcb.2018.12.001 PMID: 30594349
- Francescangeli, F.; Contavalli, P.; De Angelis, M.L.; Careccia, S.; Signore, M.; Haas, T.L.; Salaris, F.; Baiocchi, M.; Boe, A.; Giuliani, A.; Tcheremenskaia, O.; Pagliuca, A.; Guardiola, O.; Minchiotti, G.; Colace, L.; Ciardi, A.; D’Andrea, V.; La Torre, F.; Medema, J.; De Maria, R.; Zeuner, A. A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 2. doi: 10.1186/s13046-019-1505-4 PMID: 31910865
Arquivos suplementares
