Synthesis and structure of cadmium, copper, and nickel pivalate and pentafluorobenzoate complexes with 2-amino-1-methylbenzimidazole

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of copper(II), nickel(II), and cadmium(II) compounds with pivalate (Piv) or pentafluorobenzoate (Pfb) anions and 2-amino-1-methylbenzimidazole (L) molecules, [Cu2(Piv)4(L)2]·2MeCN (I), [Ni(Piv)2 (L)2][Ni(Piv)2(L)2(MeOH)] (II), and [Cd(Pfb)2(L)2] (III), were obtained. In the case of copper compounds, a binuclear complex with a Chinese lantern structure was formed, while nickel and cadmium salts gave mononuclear complexes. In all synthesized compounds, the 2-amino-1-methylbenzimidazole molecule is a monodentate ligand, being coordinated to the metal atom through the benzimidazole nitrogen atom. The compounds were characterized by X-ray diffraction, IR spectroscopy, and CHN analysis.

Texto integral

Acesso é fechado

Sobre autores

A. Chistyakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shmelevma@yandex.ru
Rússia, Moscow

L. Efromeev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: shmelevma@yandex.ru
Rússia, Moscow; Moscow

L. Popov

Southern Federal University

Email: shmelevma@yandex.ru
Rússia, Rostov-on-Don

Yu. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

Bibliografia

  1. Ibrahim S.A., Ragab A., El-Ghamry H.A. // Appl. Organomet. Chem. 2021. V. 36. № 2. P. e6508.
  2. Psomas G. // Coord. Chem. Rev. 2020. V. 412. P. 213259.
  3. Abdel-Rahman L.H., Abdelhamid A.A., Abu-Dief A.M. et al. // J. Mol. Struct. 2020. V. 1200. P. 127034.
  4. Schwietert C.W., McCue J.P. // Coord. Chem. Rev. 1999. V. 184. № 1. P. 67.
  5. Krasnovskaya O., Naumov A., Guk D. et al. // Int. J. Mol. Sci. 2020. V. 21. № 11. P. 3965.
  6. Pellei M., Del Bello F., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088.
  7. Bansal Y., Silakari O. // Bioorg. Med. Chem. 2012. V. 20. № 21. P. 6208.
  8. Anastassova N., Aluani D., Hristova-Avakumova N. et al. // Antioxidants. 2022. V. 11. № 5. P. 884.
  9. Imran M., Ali Shah F., Nadeem H. // ACS Chem. Neurosci. 2021. V. 12. № 3. P. 489.
  10. Sterling J., Hayardeny L., Falb E. et al. // U.S. Pat. Appl. Publ., 2004, 25p.
  11. Law C.S.W., Yeong K.Y. // ChemMedChem. 2021. V. 16. № 12. P. 1861.
  12. Saylam M., Aydın Köse F., Pabuccuoglu A. et al. // Eur. J. Med. Chem. 2023. V. 248. P. 115083.
  13. Gaba M., Singh D., Singh S. et al. // Eur. J. Med. Chem. 2010. V. 45 № 6. P. 2245.
  14. Mohamed B.G., Abdel-Alim A.-A. M., Hussein M.A. // Acta Pharm. 2006. V. 56. P. 31.
  15. Soni B., Singh Ranawat M., Bhandari A. et al. // Pharmacie Globale (IJCP). 2012. V. 9 P. 05.
  16. Husain A., Varshney M.M., Rashid M. et al. // J. Pharm. Res. 2011. V. 4(2). P. 413.
  17. Coetzee J., Cronje S., Dobrzańska L. et al. // Dalton Trans. 2011. V. 40. P. 1471.
  18. Błaszczak-Świątkiewicz K., Olszewska P., Mikiciuk-Olasik E. // Pharmacol Rep. 2014. V. 66. P. 100.
  19. Shrivastava N., Naim J., Alam J. et al. // Arch. Pharm. 2017. V. 350. № 6. P. e201700040.
  20. Satija G., Sharma B., Madan A. et al. // J. Heterocycl. Chem. 2022. V. 59. № 1. P. 22.
  21. Shaker S.A., Khaledi H., Cheah S.-C., Mohd Ali H. // Arab. J. Chem. 2016. V. 9. № 2. P. S1943.
  22. Hernández-Romero D., Rosete-Luna S., López-Monteon A. et al. A. // Coord. Chem. Rev. 2021. V. 439. P. 213930.
  23. Шмелев М.А., Гоголева Н.В., Иванов В.К. и др. // Коорд. химия. 2022. Т. 48. № 9. С. 515 (Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539). https://doi.org/10.1134/S1070328422090056
  24. Voronina J.K, Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. P. 678.
  25. Шмелев М.А., Гоголева Н.В., Кузнецова Г.Н. и др. // Коорд. химия. 2020. Т. 46 № 8. С. 497 (Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557). https://doi.org/10.1134/S1070328420080060
  26. Troyanov S. I., Il`ina E. G., Dunaeva K. M. // Russ. J. Coord. Chem. 1991. V. 17. P. 1692.
  27. Eremenko, I.L., Golubnichaya, M.A., Nefedov, S.E. et al. // Russ. Chem. Bull. 1998. V. 47. № 4. P. 704.
  28. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Sheldrick G. Cell_Now. Madison (WI, USA): Bruker-AXS, Inc., 2004.
  32. Twinabs. Madison (WI, USA): Bruker AXS Inc., 2001.
  33. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  34. Denisova T.O., Aleksandrov G.G., Fialkovskii O.P., Nefedov S.E. // Russ. J. Inorg. Chem. 2003. V. 48. P. 1476.
  35. Morooka M., Ohba S., Nakashima M. et al. // Acta Crystallogr. C. 1992. V. 48. P. 1888.
  36. Kirillova N.I., Struchkov Yu.T., Porai-Koshits M.A. et al. // Inorg. Chim. Acta. 1980. V. 40. P. 115.
  37. Denisova T.O., Amel’chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. P. 1098. https://doi.org/10.1134/S0036023606070084
  38. Eremenko I.L., Nefedov S.E., Sidorov A.A. et al. // Inorg. Chem. 1999. V. 38. P. 3764.
  39. Kounavi K.A., Manos M.J., Tasiopoulos A.J. et al. // Bioinorg. Chem. Appl. 2010. P. 178034.
  40. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. P. 194.
  41. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1198.
  42. Demaret A., Mercier D. // J. Appl. Crystallogr. 1983. V. 16. P. 279.
  43. Zhou Y.-H., Xu Y., Tao Q.-L. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 2376.
  44. Gao T., Dong B.-X., Sun Y. et al. // J. Mater. Sci. 2019. V. 54. P. 10644.
  45. Wang X., Xiao H. Zhang M. et al. // Polyhedron. 2020. V. 179. P. 114383.
  46. Daminova S.S., Kadirova Z.C., Sharipov K.T. et al. // J. Environ. Chem. Eng. 2020. V.10. P. 108900.
  47. Ozair L.N., Abdullah N., Khaledi H., Tiekink E.R.T. // Acta Crystallogr. E. 2010. V. 66. P. m589.
  48. Mikuriya M., Azuma H., Nukada R., Handa M. // Chem. Lett. 1999. V. 28. P. 57.
  49. Lada Z.G., Beobide A.S., Savvidou A. et al. // Dalton Trans. 2017. V. 46. P. 260.
  50. Rauf S., Trzesowska-Kruszynska A., Sieranski T., Swiatkowski M. // Molecules. 2021. V. 26. P. 3358.
  51. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. P. 116174.
  52. Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772. https://doi.org/10.1134/S1070328420110093
  53. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. 2021. V. 62. P. 184.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of complex I. Solvate molecules are not shown.

Baixar (396KB)
3. Fig. 2. Structure of compound II. Hydrogen bonds are shown by dotted lines.

Baixar (447KB)
4. Fig. 3. Structure of complex III. Hydrogen atoms are not shown.

Baixar (214KB)
5. Fig. 4. Fragment of the crystal packing of compound III. The dotted lines show hydrogen bonds and π–π interactions.

Baixar (426KB)
6. Scheme 1. Synthesis of complexes I–III.

Baixar (335KB)

Declaração de direitos autorais © Российская академия наук, 2025