Synthesis and structure of cadmium, copper, and nickel pivalate and pentafluorobenzoate complexes with 2-amino-1-methylbenzimidazole

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of copper(II), nickel(II), and cadmium(II) compounds with pivalate (Piv) or pentafluorobenzoate (Pfb) anions and 2-amino-1-methylbenzimidazole (L) molecules, [Cu2(Piv)4(L)2]·2MeCN (I), [Ni(Piv)2 (L)2][Ni(Piv)2(L)2(MeOH)] (II), and [Cd(Pfb)2(L)2] (III), were obtained. In the case of copper compounds, a binuclear complex with a Chinese lantern structure was formed, while nickel and cadmium salts gave mononuclear complexes. In all synthesized compounds, the 2-amino-1-methylbenzimidazole molecule is a monodentate ligand, being coordinated to the metal atom through the benzimidazole nitrogen atom. The compounds were characterized by X-ray diffraction, IR spectroscopy, and CHN analysis.

全文:

受限制的访问

作者简介

A. Chistyakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow

L. Efromeev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow; Moscow

L. Popov

Southern Federal University

Email: shmelevma@yandex.ru
俄罗斯联邦, Rostov-on-Don

Yu. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Ibrahim S.A., Ragab A., El-Ghamry H.A. // Appl. Organomet. Chem. 2021. V. 36. № 2. P. e6508.
  2. Psomas G. // Coord. Chem. Rev. 2020. V. 412. P. 213259.
  3. Abdel-Rahman L.H., Abdelhamid A.A., Abu-Dief A.M. et al. // J. Mol. Struct. 2020. V. 1200. P. 127034.
  4. Schwietert C.W., McCue J.P. // Coord. Chem. Rev. 1999. V. 184. № 1. P. 67.
  5. Krasnovskaya O., Naumov A., Guk D. et al. // Int. J. Mol. Sci. 2020. V. 21. № 11. P. 3965.
  6. Pellei M., Del Bello F., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088.
  7. Bansal Y., Silakari O. // Bioorg. Med. Chem. 2012. V. 20. № 21. P. 6208.
  8. Anastassova N., Aluani D., Hristova-Avakumova N. et al. // Antioxidants. 2022. V. 11. № 5. P. 884.
  9. Imran M., Ali Shah F., Nadeem H. // ACS Chem. Neurosci. 2021. V. 12. № 3. P. 489.
  10. Sterling J., Hayardeny L., Falb E. et al. // U.S. Pat. Appl. Publ., 2004, 25p.
  11. Law C.S.W., Yeong K.Y. // ChemMedChem. 2021. V. 16. № 12. P. 1861.
  12. Saylam M., Aydın Köse F., Pabuccuoglu A. et al. // Eur. J. Med. Chem. 2023. V. 248. P. 115083.
  13. Gaba M., Singh D., Singh S. et al. // Eur. J. Med. Chem. 2010. V. 45 № 6. P. 2245.
  14. Mohamed B.G., Abdel-Alim A.-A. M., Hussein M.A. // Acta Pharm. 2006. V. 56. P. 31.
  15. Soni B., Singh Ranawat M., Bhandari A. et al. // Pharmacie Globale (IJCP). 2012. V. 9 P. 05.
  16. Husain A., Varshney M.M., Rashid M. et al. // J. Pharm. Res. 2011. V. 4(2). P. 413.
  17. Coetzee J., Cronje S., Dobrzańska L. et al. // Dalton Trans. 2011. V. 40. P. 1471.
  18. Błaszczak-Świątkiewicz K., Olszewska P., Mikiciuk-Olasik E. // Pharmacol Rep. 2014. V. 66. P. 100.
  19. Shrivastava N., Naim J., Alam J. et al. // Arch. Pharm. 2017. V. 350. № 6. P. e201700040.
  20. Satija G., Sharma B., Madan A. et al. // J. Heterocycl. Chem. 2022. V. 59. № 1. P. 22.
  21. Shaker S.A., Khaledi H., Cheah S.-C., Mohd Ali H. // Arab. J. Chem. 2016. V. 9. № 2. P. S1943.
  22. Hernández-Romero D., Rosete-Luna S., López-Monteon A. et al. A. // Coord. Chem. Rev. 2021. V. 439. P. 213930.
  23. Шмелев М.А., Гоголева Н.В., Иванов В.К. и др. // Коорд. химия. 2022. Т. 48. № 9. С. 515 (Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539). https://doi.org/10.1134/S1070328422090056
  24. Voronina J.K, Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. P. 678.
  25. Шмелев М.А., Гоголева Н.В., Кузнецова Г.Н. и др. // Коорд. химия. 2020. Т. 46 № 8. С. 497 (Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557). https://doi.org/10.1134/S1070328420080060
  26. Troyanov S. I., Il`ina E. G., Dunaeva K. M. // Russ. J. Coord. Chem. 1991. V. 17. P. 1692.
  27. Eremenko, I.L., Golubnichaya, M.A., Nefedov, S.E. et al. // Russ. Chem. Bull. 1998. V. 47. № 4. P. 704.
  28. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Sheldrick G. Cell_Now. Madison (WI, USA): Bruker-AXS, Inc., 2004.
  32. Twinabs. Madison (WI, USA): Bruker AXS Inc., 2001.
  33. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  34. Denisova T.O., Aleksandrov G.G., Fialkovskii O.P., Nefedov S.E. // Russ. J. Inorg. Chem. 2003. V. 48. P. 1476.
  35. Morooka M., Ohba S., Nakashima M. et al. // Acta Crystallogr. C. 1992. V. 48. P. 1888.
  36. Kirillova N.I., Struchkov Yu.T., Porai-Koshits M.A. et al. // Inorg. Chim. Acta. 1980. V. 40. P. 115.
  37. Denisova T.O., Amel’chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. P. 1098. https://doi.org/10.1134/S0036023606070084
  38. Eremenko I.L., Nefedov S.E., Sidorov A.A. et al. // Inorg. Chem. 1999. V. 38. P. 3764.
  39. Kounavi K.A., Manos M.J., Tasiopoulos A.J. et al. // Bioinorg. Chem. Appl. 2010. P. 178034.
  40. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. P. 194.
  41. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1198.
  42. Demaret A., Mercier D. // J. Appl. Crystallogr. 1983. V. 16. P. 279.
  43. Zhou Y.-H., Xu Y., Tao Q.-L. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 2376.
  44. Gao T., Dong B.-X., Sun Y. et al. // J. Mater. Sci. 2019. V. 54. P. 10644.
  45. Wang X., Xiao H. Zhang M. et al. // Polyhedron. 2020. V. 179. P. 114383.
  46. Daminova S.S., Kadirova Z.C., Sharipov K.T. et al. // J. Environ. Chem. Eng. 2020. V.10. P. 108900.
  47. Ozair L.N., Abdullah N., Khaledi H., Tiekink E.R.T. // Acta Crystallogr. E. 2010. V. 66. P. m589.
  48. Mikuriya M., Azuma H., Nukada R., Handa M. // Chem. Lett. 1999. V. 28. P. 57.
  49. Lada Z.G., Beobide A.S., Savvidou A. et al. // Dalton Trans. 2017. V. 46. P. 260.
  50. Rauf S., Trzesowska-Kruszynska A., Sieranski T., Swiatkowski M. // Molecules. 2021. V. 26. P. 3358.
  51. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. P. 116174.
  52. Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772. https://doi.org/10.1134/S1070328420110093
  53. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. 2021. V. 62. P. 184.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of complex I. Solvate molecules are not shown.

下载 (396KB)
3. Fig. 2. Structure of compound II. Hydrogen bonds are shown by dotted lines.

下载 (447KB)
4. Fig. 3. Structure of complex III. Hydrogen atoms are not shown.

下载 (214KB)
5. Fig. 4. Fragment of the crystal packing of compound III. The dotted lines show hydrogen bonds and π–π interactions.

下载 (426KB)
6. Scheme 1. Synthesis of complexes I–III.

下载 (335KB)

版权所有 © Российская академия наук, 2025